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Abstract:    
• Purpose: In this paper we develop a resource allocation model with general forms of 

service production functions, which describe the relationship between inputs and 
outputs of a process of co-creation of value by a service provider and a service 
recipient.   The model development is directed at providing useful policy prescription 
for service providers and a foundation for research into the nature of resource 
allocation policies in service industries. 

• Design/methodology/approach: The model development makes use of concepts of 
probability theory, optimization theory and extant DEA models. 

• Findings:  A practical optimization for allocating resources to service processes as 
well as insights into the complexity of service resource management are obtained.  

• Research limitations/implications: The model presented in this paper is based on 
constant returns to scale of the service process. 

• Originality/value:  To date, service science lacks models for resource management 
that approach the usefulness of resource-management models for manufacturing 
enterprises even though the service economy in the industrialized world is larger 
than the manufacturing economy.  This paper initiates a stream of model-building 
research. 

 
Research Paper 
Keywords:  resource allocation, dispatching, service process 
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Stochastic models of resource allocation for services 
 

1. Introduction 

This research paper presents the development of a mathematical model for allocating 
and dispatching resources in a service enterprise.  The starting point for this model is 
the definition of a service process.  We define a service process as a coordinated set of 
activities which transforms a set of tangible and intangible resources (inputs), which 
include the contributions from the service recipient, into another set of tangible and 
intangible resources (outputs).  Fitzsimmons (1985), Bettencourt et al. (2002), Lance et 
al. (2002), Sampson (2007) and others have firmly established the defining 
characteristic of service processes as the co-production of service outputs through the 
joint effort by the provider and recipient of the service. Tang & Zhou (2009) have refined 
this concept by emphasizing the coordination of these joint efforts, introducing the word, 
taktchronicity, to indicate the requirement of choreographed effort among multiple 
participants in the service process. Examples of the kinds of service enterprises that 
motivate this research are software development, consulting, education and project 
management. 

Resource allocation is the managerial function of making available levels of capacity 
that can support planned operations.  Resource dispatching is the managerial function 
of assigning resources to particular processes.  In the case of service processes, the 
resources are provided by both the service provider and the service recipient.  
Furthermore, a typical service process requires several different types of inputs, such as 
labor, material, information, equipment, and produces several types of output, such as 
money, information and software.  The relationship of the outputs of a process to the 
inputs is specified by a function that we call the service technology function.   

Unlike manufacturing processes, service processes are generally not well understood 
by either the service provider or service recipient.   In particular, high value-adding 
services, such as those that motivate this research, are rarely understood in enough 
detail to allow the publication of a process sheet that describes detailed steps in the 
process along with accurate resource requirements and cycle times for each step as 
one would find in a manufacturing environment.  There are several sources of 
uncertainty for a typical service process.  Among these are, 

 
• Uncertainty of client commitment 
• Uncertainty of client quality 
• Uncertainty of the knowledge of the service process – estimation and 

specification of usage and yield rates 
• Uncertainty of recognized uncontrollable factors which may cause changes to 

usage and yield rates 
 
The thrust of this research is the development of mathematical decision models for 
resource management in service enterprises.  The long-term goal of this stream of 
research, which is consistent with the exhortations in Chase and. Garvin (1989), 
Fitzsimmons and Fitzsimmons (2004), Spohrer  et al. (2007) and Machuca et al. (2007), 
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is the accomplishment of model-based decision support for service supply chains that is 
at least as sophisticated as that which is available to manufacturing enterprise.   
 
The contribution of the research presented herein is three-fold: 
1. A modeling framework for service processes that can serve as a foundation for 

further model development 
2. A useful optimization model for resource allocation and dispatch 
3. Some basic guidelines for optimal resource allocation/dispatching, for client 

involvement and adaptation of resource management to process learning 
 

Resource-management modeling in service industries is in its infancy.  Most of the effort 
in this field has been devoted to data envelopment analysis (DEA).  DEA provides a 
typically macroscopic view of service processes and focuses on estimating and 
comparing the economic efficiency of services.  See Charnes et. al. (1994), Fare and 
Grosskopf (2000) and Golany et. al.(2006) for perspective and overview of DEA. For the 
resource manager, a microscopic view is needed with the aim of determining the 
optimal assignment of resources to processes given their existing efficiencies.  Few 
references are available for “shop-floor” resource management models.  Korhonen and 
Syrjanen (2004) utilize a DEA model of service efficiency in order to determine 
directions for changing the resource allocations to the service in pursuit of multiple 
objectives.  Their model is oriented towards a macro re-distribution of resources to an 
ongoing service enterprise.  Gaimon (1997) takes a more process-level approach to 
setting workforce levels overtime for IT and knowledge workers.  White and Badinelli 
(2009) extend this work to a workforce planning model in which client involvement at its 
effect on quality and efficiency are explicitly represented.  All of these resource-planning 
models are deterministic.   

In the current paper we model a single-stage service process that requires an arbitrary 
number of types of inputs and produces an arbitrary set of outputs.  We achieve a 
higher level of realism than the contributions mentioned above because of the 
incorporation of uncertainty into the process model.  Our approach is more specific than 
that provided by Bordoloi and Matsuo (2001), Carillo and Gaimon (2004), Napoleon and 
Gaimon (2004) and Dietrich (2006), and focuses on the scheduling problem of 
assigning resources to particular service processes as opposed to aggregate resource 
allocation. 

We begin with a model of a technology function of a single-stage service process 
proposed by Athanossopoulus (1998), which was offered for a DEA study.  A technology 
function for a service encounter is a function that effectively maps inputs to outputs 
according to the capabilities of the service participants to transform inputs into outputs.  
We construct this functional relationship by considering the inputs and outputs of a 
process to be functions of the volume, or number of service “cycles”, of the process 
which are simultaneously executed.  

 
2. Technology functions 
Different technology functions types can produce a given set of inputs and outputs.  
Efficiency is determined by a technology function.  In service processes the combination 
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of inputs which produces a specified set of outputs can vary.  Hence, there may be 
more than one technology function type available to a service process.  We posit the 
following principles for any technology function that can represent realistically a service 
process. 
 

 
1. The service process has inputs from two sets – one controlled by the provider and 

one controlled by the client. 
 
2. There are technology constraints in the form of standard usage and yield limits 

expressed in terms of quality units.  The qualities of inputs and outputs are 
independent of the perceived utility of the inputs and output. 

 
3. The technology constraints may not be fully known to the provider or the client, 

which makes the model stochastic. 
 

4. The technology function is defined as the optimal solution to a game between the 
service provider and the service recipient.  Different assumptions about knowledge 
sharing and power can produce different game equilibria. 

 
5. There are constraints in terms of resource allocations that determine the resource 

units that are actually provided and the resource units that are actually yielded from 
a process. 

 
6. Awareness – the client may not have full knowledge of the provider’s resource 

commitments and the quality of the provider’s resource commitments.  Similarly, the 
providers may not have full knowledge of the client’s resource commitments and the 
quality of the client’s resource commitments.   
 

7. The objective function that determines the optimal process inputs and outputs is the 
maximization of utility through a of the service participants. 

 
Define,  

( ) == pm2p1pp x,...,x,xx a vector of quantities of the m input types required by 

process p  
( ) == pn2p1pp y,...,y,yy a vector of quantities of the n output types required by 

process p  
 
In general, a technology function for any process, p , is a vector function that expresses 
the vector of outputs as a function of the inputs.   
 

{ } { }
OpIp SjpjSipip yx,tT ∈∈ =






         

 
A linear, variable-returns-to-scale (VRS) technology function can be written, 
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ppp ybx T =+            

Where pT is a matrix of constants. 

A linear, constant-returns-to-scale (CRS) technology function can be written,  
 

ppp yx T =           

 
The form of the technology function that we use for our model is a special case of linear, 
CRS function that can be found in Athanassopoulis (1998).  We will refer to this type of 
function as a “recipe” function because it describes the relationship of inputs to outputs 
in terms of usage rates and yield rates of a process cycle.  For a recipe-type technology 
function, the s'x i must be procured according to usage rates of a process cycle and 

s'y j are generated according to yield rates of a process cycle.  The “recipe” for inputs 

and outputs pre process cycle forces all inputs to be in fixed proportions with respect to 
one another. 
 
The recipe technology function form 
Note: The word “benchmark” specifies an ideal process that is 100% efficient 

pi
pi

1
β

µ = = benchmark usage of resource i per cycle of process p  

==
pj

pj
1

α
γ  benchmark generation (yield) of resource j per cycle of process p  

=piβ  benchmark technological coefficient of input i of process p (number of process 

cycles per unit of resource) 
=pjα  benchmark technological coefficient of output j of process p ( number of process 

cycles per unit of resource) 
=pv volume of the process p execution.  Can be thought of as the number of cycles of 

process p that are executed 
 

m,...,1i,xv pipip ==µ          (1) 

n,...,1j,yv pjpjp ==γ          (2) 

pi

pi

pj

pj
p

xy
v

µγ
==⇒ ,           

pipj

pi
pipipjpi

pi

pj
pi

pj

pi
pj

x
xxxy

µα
βγ

µ
γ

α
β

==== ,     (3) 

 
Fixed proportions of inputs and outputs are inherent in these formulas for the elements 
of the technology function.  For example, 
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ppi

ppj

pi
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α
β
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===          

 
A matrix form of the technology function 
The technology function, which expresses outputs as functions of inputs, can be written 
as a matrix multiplication as follows: 

ppp xy τ=             

 where, 

m

T
pp

p
βγ

τ =             

pipjpj

pi

pi

pj
pipjpji

1
µαα

β
µ
γ

βγτ ====         

 
The columns of the technology matrix are linearly dependent, each column being a 
multiple of a single, base column of technology coefficients. Similarly, the rows are 
linearly dependent.   Note that this version of the matrix, is more constrained than that 
of the general linear CRS case.  In the case of the process model the matrix is a dyad. 
The dyad can be built from the usage and yield parameters or from the technology 
coefficients. 
 
From DEA we have the familiar general form of the relationship between inputs and 

outputs of an efficient CRS technology function, p
T

p
T xvyu = .   One may wonder 

about the correspondence of the recipe technology function to this relationship.  The 
following theorem establishes the generality of the recipe model. 
 

Theorem 1:  A technology function implies the relationship, p
T

p
T xvyu = , if and only if 

the technology function is a process-model function. 
 
Proof: 
Suppose ppp xy τ=  

Multiplying both sides by the vector, T
pα , we obtain 

p
T
pp

T
p xny βα =   

Now suppose, p
T

p
T xvyu = , where pp u,nv αβ ==

 
Using the same definitions given in the development above, we can derive the result, 
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p
T
ppp xy γα=           || 

 
Efficiency within the recipe model 
We define the actual technology parameters )ga,u,b( pppp for a given instance of a 

process from the ideal parameters ),,,( pppp γαµβ as follows: 

pppp g,u γµ ≤≥            

,a,b pppp αβ ≥≤            

 
For the reader who has a background in DEA, we make one final connection of the 
current model to this large body of knowledge.  DEA studies are directed at measuring 
the overall efficiency of a process. For the recipe model we can evaluate the difference 
between volume supported by inputs to volume required by outputs to measure 
inefficiency.   Suppose, for a particular execution of a process,  
 

∑∑∑∑
====

=−⇒≥
n

1j
pjpj

m

1i
pipi

n

1j
pjpj

m

1i
pipi ysxyx αβαβ   

 
The surplus variable

 
s represents the overall level of

 
inefficiency of the process.  (See 

Athanassopoulos, 1998).
   

∑
=

−=
m

1i
pipipp x)e1(s β , which effectively measures the amount of wasted input 

resources.The surplus of weighted inputs over weighted outputs represents the overall 
inefficiency of the process.  If the efficiency is 100%, then 0s p = . 

∑
−=

i
pipi

p
p x

s
1e

β
          

For resource allocation and dispatching, we must consider efficiency as a multi-
dimensional quantity.  That is, the effectiveness of each input resource on a process can 
be different and the productivity of the process in terms of each output resource can be 
different.  We view inefficiency in terms of deviations from the benchmark recipe.  
Hence, efficiency has a multi-dimensional foundation in the technology function.  For 
resource planning purposes, we need to measure the components of the efficiency in 
order to know which input resources should be adjusted. 
 
Randomness  and inefficiency in the recipe model 
Inefficiency can be due to systemic shortcomings in the DMU as well as random 
variations in performance.  There is a parallel to the notions of common vs. specific 
causes of variation in modeling of manufacturing processes. 
 
We can represent the inherent inefficiency of a particular service encounter as well as 
the inherent uncertainty in the performance of the service process by defining non-
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negative random variables to represent the deviation of the process parameters from 
their ideal, deterministic values.   

puppu δµ +=            

pgppg δγ −=            

bpppb δβ −=            

pappa δα +=            

where each delta random variable has non-negative support.  These expressions define 
the process parameters, )ga,u,b( pppp , as random variables. 

 
We assume that the inputs to the service process are controllable and inputs are 
dispatched prior to the realization of random variations of process parameters.  Outputs, 
on the other hand, are produced through the realization of process parameters.  Hence, 
the outputs, n,...,1j,y pj = , are also random variables. 

 
Since,  
 

( ) ppipbpipipi vxxb =−= δβ  for m,...,2,1i = .  

 
the random variables, pm2p1p b,...,b,b , must be perfectly correlated.  That is, after the 

process inputs are dispatched, the process usage rates mutually adjust to values that 
support a certain volume and which are consistent with the inefficiencies and random 
variations of the usages.   

Define, pipip xβν = and 1
v

p

p
p ≤=

ν
ε  

Then, 

pppipi xb νε=           (4) 

 
Each random variable, pipi xb , can be replaced by the random variable pν Hence, the 

m decision variables, pm1p x,...,x can be replaced with a single decision variable, pν . 

 
3. Optimization 
 
The criteria for the resource dispatching decision can be stated as follows:  

Problem P1 

{ }
( ) p

p

T
ypj

ŷ

0
pj

jpx
xcdy)y(fyŷw  min

pj

pj

p
∑∫∑∑ +−  

subject to: 
0xr p

p
≥−∑  
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0x p ≥   for all p  

 
=pŷ  a vector of target outputs for process p  

=
pjyf the distribution of pjy , which is a function of the resource allocations, px   

=r  vector of capacities of available resources 
 
 
The Loss Function 
The portion of the objective function that captures the effects of failing to produce 
enough outputs to reach desired targets is called the loss function. 

( ) dy)y(fyŷw
pj

pj

ypj

ŷ

0
pj

jp
−∫∑∑        (5) 

 
The loss function in the objective function makes the optimization a rather complex NLP. 
 
Lemma 1: The loss function increases with inefficiency  
 
Proof:  The proof is established most easily from the form of the loss function, (5). 
Inefficiency is reflected in the probability distribution for pjy .   

If we consider any two service processes such that the second process has less 
efficiency than the first, then the probability distribution for j2y stochastically dominates 

the probability distribution for j1y . 

( ) ( ) dy)y(fyŷdy)y(fyŷ
j2

j2

j1

j1

yj2

ŷ

0
yj1

ŷ

0
−≥− ∫∫      || 

 
Lemma 2: Loss is increasing in the targets, pjŷ  

 
Proof: Obvious from original form of the loss function, (5). 
 
 
The Loss Function in terms of technology parameters 
 
By expressing pp y,x  in terms of their dependence on the volume through pppx νµ= ,

, we can reduce the set of decision variables from { }pm2p1p x,...,x,x to 

the single variable, pν .  Furthermore, we introduce the probability distribution of the 

random parameters, ppg ε , which allows us to re-state the problem more directly in 

terms of the sources of randomness.  Define, 
 

pppp gy νε=
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ppjpj gz ε=  

Then, 













=

p
zy

y
F)y(F

pjpj ν
 and 














=

p
z

p
y

y
f1)y(f

pjpj νν
 

( ) ( ) ( ) ( )dzzfzẑdy
y

f
yŷ

dyyfyŷ
pj

pj

ppj

pj

pj

pj

zpj

ẑ

0
p

p
g

p

pj
ŷ

0
ypj

ŷ

0
−=


























 −
=− ∫∫∫ ν

νν ε   

Where 
p

pj
pj

ŷ
ẑ ν=  

Problem P2 
The resource dispatching problem becomes, 
 

{ }
( ) ( ) pp

p

T
zpj

ẑ

0
ppj

jp
cdzzfzẑw  min

pj

pj

p

νµν
ν

∑∫∑∑ +−  

subject to: 
0r pp

p
≥−∑ νµ  

0p ≥ν   for all p  

The loss function now can be manipulated into a form that is more convenient for 
computation and further analysis. 
 

( ) ( ) ( )

∫

∫∫

=

+−=−

pj

pj

pj

pj

pj

pjpjpj

pj

ẑ

0
z

ẑ

0
z

ẑ

0zpjzpjzpj

ẑ

0

dz)z(F

dz)z(F)z(zF)ẑ(Fẑdzzfzẑ

 

Define, 

∫
∞

=−=
z

zzz ds)s(f)z(F1)z(G
pjpjpj

 

∫
∞

=
z

zz ds)s(G)z(A
pjpj

 

∫
∞

=
z

zz ds)s(A)z(B
pjpj

 

Lemma 3:  [ ]pjz zE)0(A
pj

=  

Proof:  See Hadley-Whitin (1963) 
 
 
Denote [ ] pjpj zzE = .  The loss function can be written, 
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( ))ẑ(Azẑw  pjzpjpjppj
jp

pj
+−∑∑ ν        (6) 

 
Lemma 4: Loss is decreasing and convex in volume 
Proof:   

Recall that 
p

pj
pj

ŷ
ẑ ν=

 

( )( )
( ) )ẑ(Gẑw)ẑ(A)0(Aw 

)ẑ(A)0(Aẑw
d

d 

pjzpjpjpjzzpj

pjzzpjppj
p

pjpjpj

pjpj

++−=

+−ν
ν

 

Since 
pjzA is decreasing and convex,  and 

pj

pj
z

z
G

dz

dA
−= , 

)ẑ(Gẑ)ẑ(A)0(A pjpjpjpjzz pjpj
−<+−  

Therefore the loss function is decreasing in volume. 
 

( )( )

( )( ) )ẑ(Gẑw)ẑ(A)0(Aw
d

d

)ẑ(A)0(Aẑw
d

d 

pjzpjpjpjzzpj
p

pjzzpjppj2
p

2

pjpjpj

pjpj

++−=

+−

ν

ν
ν

 

0)ẑ(fẑw)ẑ(G
ẑ

w)ẑ(G
ẑ

w pjz
p

2

pjpjz
p

pj
pjpjz

p

pj
pj pjpjpj

>+−
ννν

 

Therefore the Loss function is convex in volume.     || 
 
KKT conditions 
The lagrangian for Problem P2 is, 

( )













−+++−= ∑∑∑∑

p
pp

T
pp

p

T
pjzpjpjppj

jp
rc)ẑ(Azẑw  ),(L

pj
νµλνµνλν  

 
The convexity of the loss function ensures a unique solution.  The first-order KKT 
conditions for the optimization problem include, 
 

( ) ( ) p
TT

pjzpjpjpjzpjpj
jp

c)ẑ(Gẑw)ẑ(Azw0L
pjpj

µλ
ν

++++−==
∂
∂

∑   (7) 

The derivative of the loss function in (7) represents the marginal value of one unit of 
volume to the achievement of target levels of output.  We denote this marginal value,  

)(M pp ν . 

( )













++−−= ∑ )ẑ(Gẑ)ẑ(Azw)(M pjzpjpjzpjpj

j
pp pjpj

ν      
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Then (30) states, 
 

( ) p
TT

pp c)(M µλν +=∗          (8) 

 
The right-hand side of (8) is the marginal resource cost of a unit of volume.  Note that, 
by Lemma 4, )(M pp ν is positive and decreasing ensuring a unique solution to (8).  

Standard NLP methods such as KNITRO (see Byrd, et al., 2006) can be used to find the 
optimal volumes of all available processes and, hence, the optimal dispatch of input 
resources to the processes. 
 
Theorem 2:  Processes that have lower usage rates will be allocated higher proportions 
of available input resources and achieve higher volumes under an optimal policy.  
 
Proof:  From the definition of pν  

∗∗ = ppipix νβ ,
∑

=
∗

∗

i
pi

pi

p

pi

x

x

β
β

        || 

Allocation of resources across processes 
The optimality conditions indicate that the optimal allocation of input resources across 
processes that are different in terms of their efficiencies, uncertainties and/or output 
targets is quite complex and, in some cases counter-intuitive.   The behavior of 

)(M pp ν as these characteristics of a process change is not uni-directional.  

Furthermore, the fact that )(M pp ν and the optimality condition (8) are based on vector 

inner products, there is the possibility that different process can differ in one direction on 
some dimensions and in another direction on other dimensions.  Therefore, simplistic 
guidelines for dispatching resources across different processes are not to be expected. 
 
Conflict between service providers and service recipients 
The resources that are dispatched as inputs to a process are provided by both the 
service recipient and the service provider.  Similarly, the benefits of the outputs of a 
service encounter are enjoyed by both parties, however, not necessarily in the same 
way.  Specifically, the weights, pjw , and the targets, pjŷ may be different for the two 

parties.  Clearly, such differences will lead each party to arrive at a different optimal 
policy.   
 
Another opportunity for a conflict in the support of a process provided by the service 
provider and the service recipient stems from their differences in the probability 
distribution of the process parameters, pz .  Clearly, any difference in the specification 

and estimation of these distributions will manifest themselves in differences in  
)ẑ(Gẑ)ẑ(Az pjzpjpjzpj pjpj

++− , which would imply different solutions for (8). 

 



12 
 

Solutions to Problem P2 for different parameter values and probability distributions 
reveal that the magnitude of differences in service-process support and expectations of 
outcomes are bound to create mis-understandings and conflicts between providers and 
recipients that are well-known in service enterprises such as consulting and education.   
 
A clear recommendation can be derived from this research.  Service providers and 
service recipients should make every attempt to educate themselves jointly about the 
nature of a service process before they engage in dispatching resources to it.  This joint 
understanding of a process has the benefits of minimizing the uncertainty about the 
process and, perhaps more importantly, create a consensus about specification and 
estimation of the process technology.  Furthermore, we can recommend that, having 
achieved this consensus, the solution to Problem P2 be computed by both parties so 
that the optimal plan for the service encounter is consistently executed. 
 
4. Conclusion 
 
This paper provides a model for resource dispatching to specific service encounters 
within a service enterprise.  The optimization is straightforward and achievable by 
standard NLP software.  Therefore, the model has practical utility. 
 
The model presented herein is a stochastic model of a service process which has the 
potential to capture randomness of service processes as well as uncertainty in the 
specification and estimation of process parameters by the process participants.  
Consequently, the data collection and parameter estimation that is necessary to apply 
this model necessarily involves assessing the extent of the knowledge of the process by 
the service provider and the service recipient.  The model allows the investigation of the 
sensitivity of the policy for resource dispatch to process knowledge and the asymmetry 
of these policies across participants who differ in their understanding of the service 
process. This type of investigation holds the promise of bringing service providers and 
service recipients towards common ground in planning service processes. 
 
Future research will expand this model into a multi-stage framework and the 
investigation of two-party games as a means to describe the interplay of a service 
provider and a service recipient in their decisions to dispatch resources to a service 
process.  
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